
Homework 2
Version as of Nov 7, check for updates

Due date for HW2 is Wed, Nov 20, 20:00.

Rules

[1] File Format: Submit only one PDF file. The filename must follow the format:
Firstname Lastname homework2.pdf.

[2] Submission Method: Using LaTeX or a handwriting app on an iPad is strongly recom-
mended. If you want to submit handwritten paperwork, it must be scanned by a printer
and saved as a PDF pictures converted to PDF are not acceptable.

[3]Answer Order: Answer the questions in the same order they are listed. Do not change
the order or mix them up.

[4] Highlighting Answers: Underline each final answer clearly.

[5] QuTiP Outputs: When using QuTiP, include only a screenshot of the final result. Do
not include the entire code.

[6] Legibility of Handwritten Figures: Handwritten figures must be clear and easy to read.
Illegible figures will result in a loss of points.

[7] Deadline: Late submissions will not be accepted under any circumstances.

Each exercise is worth 1 point.
Extra point for each error reported on the forum (minus trivial typos).

A. Introduction: classical vs. quantum oscillator models

Classical model

The classical Hamiltonian function for a harmonic oscillator is given by the following
expression:

H(x, p) =
p2

2m
+
mω2x2

2
= ω

[
x

√
mω

2
+ i

p√
2mω

][
x

√
mω

2
− i

p√
2mω

]
, (1)

where x is position, m is mass, p is momentum, and ω is the resonance frequency (we
eliminated the spring constant k = mω2). We can replace position and momentum

variables with linear combinations of position and momentum, A =
[
x
√

mω
2

+ i p√
2mω

]
and A∗ =

[
x
√

mω
2

− i p√
2mω

]
, and rewrite the Hamiltonian function as

H(A,A∗) = ωAA∗ = ωA∗A. (2)

With these new variables, the equations of (Newtonian) motion are particularly simple:

Ȧ = −iωA. (3)
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Figure 1: Schematic of a harmonic oscillator and its classical motion. The vector A(t)
rotates in the complex plane at a rate ω. Presented this way, one may argue that the
harmonic oscillator motion is the simplest possible type of motion.

The solution is A(t) = A(t = 0) exp(−iωt). The complex number A is a vector in
the Re-Im plane and it just rotates at an angular frequency ω starting from its initial
value A(t = 0). The conjugate vector A∗ does the same except rotating in the opposite
direction. At any given time we know A(t) and A∗(t) from which we get position x(t) =

(A(t) + A(t)∗)
√

1
2mω

and and momentum p(t) = i(A(t)∗ − A(t))
√

mω
2
. The length |A|

stays constant, which makes sense, because |A|2 = A∗A is proportional to the oscillator’s
total energy. The total energy stays the same, periodically redistributing between the
potential energy U(x) = mω2x2/2 and the kinetic energy p2/2m.

Quantum model

For a quantum description, we first have to come up with a vector space to define the
oscillators quantum states |Ψ⟩ by analogy with qubits. It can be a bit more tricky, though,
since we might need more than two basis vectors. Next, we need to figure out how the
operators such as x̂ and p̂ act on |Ψ⟩. Next, we would set up the Schrodinger’s equation

∂|Ψ(t)⟩/∂t = (−i/ℏ)Ĥ(x̂, p̂)|Ψ⟩, (4)

solve for |Ψ(t)⟩, and use it to learn everything quantum mechanics allow us to know about
the motion of a quantum harmonic oscillator.

How do we start? Let’s recall a general property of quantum evolution for the mean values
of observables. We already encountered this with qubits:

∂⟨x̂⟩/∂t = (−i/ℏ)⟨[x̂, Ĥ]⟩ = (−i/ℏ)⟨x̂Ĥ − Ĥx̂⟩, (5)

where ⟨...⟩ = ⟨Ψ(t)|...|Ψ(t)⟩. Moreover, we expect that the mean values of quantum ob-
servables agree with classical mechanics, whenever possible. Classically, we have ẋ = p/m,
so we’d better satisfy ∂⟨x̂⟩/∂t = ⟨p̂⟩/m. Since Ψ(t = 0) can be chosen arbitrary, the
only reasonable option to match the two mean values would be to match the corre-
sponding operators. That is operators x̂ and p̂ must be related in such a way that
[x̂, Ĥ] = [x̂, p̂2/2m] = (+iℏ)× p̂/m. This is equivalent to a commutation relation:

[x̂, p̂] = x̂p̂− p̂x̂ = iℏ (6)

So, we have not yet defined the vector space for a harmonic oscillator, but we already
know the commutation relation between momentum and position operators! Without a
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basis, we cannot define the matrices for such operators. In fact, one may be puzzled by
the mathematical meaning of x̂p̂− p̂x̂ = iℏ: the l.h.s. is an operator, the r.h.s. is a (com-
plex) number. What this means is for any oscillator state |Ψ⟩, we get (x̂p̂−p̂x̂)|Ψ⟩ = iℏ|Ψ⟩.

By analogy with the classical model, we introduce the “ladder” operators (the ladder will
come in soon) â and â†: â = 1

2
(x̂/x0) +

1
2
i(p̂/p0) and â

† = 1
2
(x̂/x0)− 1

2
i(p̂/p0):

x̂ = x0(â+ â†) (7)

p̂ = −ip0(â− â†) (8)

[a, a†] = ââ† − â†â = 1 (9)

where x0 =
√

ℏ/2mω and p0 =
√

ℏmω/2 (it’s helpful to remember that x0p0 = ℏ/2).
The commutation relation [â, â†] = 1 follows directly from [x̂, p̂] = iℏ. The Hamiltonian
operator becomes

Ĥ = ℏωa†a+
1

2
ℏω (10)

So far, this way of writing the Hamiltonian does not buy us anything until we learn some
more about the way operator â works. Curiously, the operator â is neither hermitian
(â† ̸= â) nor unitary (â†a ̸= ââ†). Nevertheless, this operator is going to be quite useful.
The operator â†a is called the “number” operator, it is hermitian, since it represents an
observable related to the oscillator’s energy.

Energy eigenstates (Fock states) basis

We can construct the vector space for a quantum harmonic oscillator using the eigenstates
of the Hamiltonian operator, also called energy eigenstates or Fock states. We stick to
Dirac notations and denote the state |E⟩ as the energy eigenstate of Ĥ with eigenvalue E,
that is Ĥ|E⟩ = E|E⟩. To start our construction, let us find out how the ladder operators
â and â† act on an energy eigenstate |E⟩. What can we learn about state â†|E⟩? Check
this out:

Ĥ
(
â†|E⟩

)
= ℏω(â†ââ† + â†/2)|E⟩ = ℏωâ†(â†â+ 1 + 1/2)|E⟩ = â†Ĥ|E⟩+ ℏωâ†|E⟩ =

= (E + ℏω)
(
â†|E⟩

)
Thus, for any eigenstate |E⟩ of Ĥ with eigenvalue E, the state â†|E⟩ is also an eigen-
state of Ĥ but with a higher eigenvalue (energy) E+ℏω. What state would be â|E⟩ then?

Ĥ
(
â|E⟩

)
= ℏω(â†ââ+ â/2)|E⟩ = ℏω(ââ† − 1 + 1/2)â|E⟩ = âĤ|E⟩ − ℏωâ|E⟩ =

= (E − ℏω)
(
â|E⟩

)
Thus, for any energy eigenstate |E⟩ with an eigenvalue E, the state â|E⟩ is also an energy
eigenstate but with a lower eigenvalue (energy) E − ℏω.

The ground state. Applying â operator twice, we find that state â
(
â|E⟩

)
is also an

eigenstate of Ĥ with eigenvalue E − 2ℏω, and so on. Eventually, we will reach a special
eigenstate |0⟩, also called “ground” state, which corresponds to the lowest possible eigen-
value of Ĥ given by E0 – the lowest possible energy that a quantum oscillator can have.
How do we organize that there are no eigenstates of Ĥ with eigenvalues lower than E0?
The only way is to satisfy

â|0⟩ = 0 (11)
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That is, applying operator â to the ground state ket |0⟩ does not produce any new ket
but rather produces what’s usually called a null-vector in linear algebra. Imagine â repre-
sented by some matrix and |0⟩ is some column vector (we’ll get there), then multiplying
the column by the matrix gives a column all filled with zeros.

The ground state energy. Let’s find out this lowest possible (ground state) energy E0.
Given that â†

(
â|0⟩

)
= 0 and Ĥ|0⟩ = E0|0⟩, we get

E0 = ⟨0|Ĥ|0⟩ = ℏω⟨0|â†â|0⟩+ 1

2
ℏω⟨0|0⟩ = 1

2
ℏω. (12)

Unlike classical oscillators, the lowest possible energy of a quantum oscillator is not zero.
A quantum oscillator apparently just can’t stay still! The motion associated with the
ground state energy ℏω/2 is called “zero-point” motion. How cool is that?

The first excited state. The next lowest energy eigenstate |1⟩ must be given by |1⟩ =
C1â

†|0⟩ and have energy E1 = E0 + ℏω. Can it be that there is some other energy
eigenstate |E ′⟩ with a lower eigenvalue E ′ < E0 + ℏω? No, because then a state â|E ′⟩
would be an eigenstate with energy less than E0, which is impossible. The constant C1 is
generally necessary to ensure the normalization ⟨1|1⟩ = ⟨0|0⟩ = 1. How do we recover the

value of C1? Recall that
(
C1â

†|0⟩
)†

= C∗
1⟨0|â, so the normalization condition becomes

1 = ⟨1|1⟩ = |C1|2⟨0|ââ†|0⟩. We also know that ⟨0|ââ†|0⟩ = ⟨0|1 + â†â|0⟩ = ⟨0|0⟩ = 1, so
we may set C1 = 1 and the final result is:

|1⟩ = â†|0⟩ (13)

Ĥ|1⟩ = (E0 + ℏω)|1⟩ = 3

2
ℏω|1⟩ (14)

Complete energy eigenstates basis. We can proceed creating higher energy eigen-
states by applying â† operator to the ground state n times. Consider the n-th lowest
energy eigenstate |n⟩ with eigenvalue En = 1

2
ℏω + nℏω. This is what we know already

about it:

|n⟩ = Cnâ
†|n− 1⟩ = CnCn−1(â

†)2|n− 2⟩ = CnCn−1Cn−2(â
†)3|n− 3⟩ = ... (15)

Ĥ|n⟩ = ℏω(n+ 1/2)|n⟩ (16)

To find the normalization constant, we notice that ⟨n|â†â|n⟩ = n and 1 = ⟨n|n⟩ =
⟨n − 1|âC∗

nCnâ
†|n − 1⟩ = |Cn|2⟨n − 1|1 + â†â|n − 1⟩ = |Cn|2n, that is Cn = 1/

√
n. Also

notice that â
(
â†|n − 1⟩

)
=

√
nâ|n⟩ but also â

(
â†|n − 1⟩

)
= (1 + â†â)|n − 1⟩ = n|n − 1⟩,

which finally leads us to:

â|n⟩ =
√
n|n− 1⟩ (17)

â†|n− 1⟩ =
√
n|n⟩ (18)

|n⟩ = (â†)n√
n!

|0⟩ (19)

Our construction of the quantum harmonic oscillator vector space is complete! We have
a (infinite by countable) set of orthonormal kets |n⟩, n = 0, 1, 2, .. which are the energy
eigenstates (a.k.a. Fock states), we know how the ladder operators â (the lowering op-
erator) and â† (the raising operator) act in this basis, and we can express operators
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of physical quantities, such as energy, position, and momentum via the ladder operators.

Summary. A quantum harmonic oscillator can only have discrete values of energy En =
ℏω(n + 1/2). The quantum of energy ℏω is proportional to the oscillator’s classical
frequency ω and we need the Planck’s constant ℏ to relate frequency and energy. The
lowest possible energy is non-zero but ℏω/2. By analogy with qubits, any state |Ψ⟩ an
oscillator can be written as a superposition of its energy eigenstates (Fock states):

|Ψ⟩ = ψ0|0⟩+ ψ1|1⟩+ ψ2|2⟩+ ... =
∞∑
n=0

ψn|n⟩ (20)

where ψ0, ψ1, ψ2, etc. are complex numbers (amplitudes). Just like in the case of qubits,
we are allowed to query a quantum oscillator in some state |Ψ⟩ “what is your energy?”
The reading on the “energy meter” would be ℏω(n+1/2), n = 0, 1, 2, ..., with a probabil-
ity |⟨n|Ψ⟩|2 = |ψn|2. Following such a query (the quantum measurement), the oscillator is
initialized in a specific energy eigenstate, corresponding to the eigenvalue indicated by the
meter. Repeated measurements would thus copy the first measurement result. To keep
the total probability of all possible measurement outcomes unity, we require

∑
n |ψn|2 = 1.

The global phase factor does not matter and can be removed: for example, ψ0 can always
be chosen a real number). For better or worse, there is no Bloch sphere for oscillators,
because we are no longer restricted to two basis states (the north pole and the south pole).

Figure 2: Illustration of the quantum harmonic oscillator energy eigenstates and the
ladder operators. There is a minimal energy state, called the ground state |0⟩, but there
is no maximal energy state. The function V (x) represents the potential energy, in our
case given by V (x) = mω2x2/2.

The Hamiltonian operator in Dirac notations can be written as

Ĥ/ℏω =
1

2
|0⟩⟨0|+ 3

2
|1⟩⟨1|+ 5

2
|2⟩⟨2|+ 7

2
|3⟩⟨3|+ ... (21)

The time evolution is given by the unitary operator |Ψ(t)⟩ = Û(t)|Ψ(t = 0)⟩:

Û(t) = exp(−iĤt/ℏ) = exp(−iωtâ†â) (22)
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(yes, we removed the global phase factor due to the ℏω/2-term). In analogy with qubits,
the time-evolution is the simplest in the energy eigenstates basis:

|Ψ(t)⟩ = exp(−iωtâ†â)|Ψ(t = 0)⟩ (23)

|Ψ(t)⟩ =
∞∑
n=0

[
ψn exp(−inωt)

]
|n⟩ (24)

We remind that if |Ψ(t = 0)⟩ is one of the Fock states, then it does not really evolve in
time aside from being multiplied by the phase factor.

Exercise 1: We are not yet in a position to discuss the outcome of instantaneous mea-
surements of position x̂ or momentum p̂ observables, like we did with the qubit Pauli
operators. However, we can already predict the result of repeating a quantum measure-
ment of x̂ and p̂ many times (each time starting with the same initial state). Indeed, use
Eq. 7 and Eq. 8 and calculate the mean values of ⟨Ψ|x̂|Ψ⟩ and ⟨Ψ|p̂|Ψ⟩ operators for an
oscillator in states |Ψ⟩ = |0⟩ and |Ψ⟩ = |n⟩.

Exercise 2: Calculate xRMS =
√
⟨Ψ|x̂2|Ψ⟩ and pRMS =

√
⟨Ψ|p̂2|Ψ⟩ for an oscillator

in states |Ψ⟩ = |0⟩ and |Ψ⟩ = |n⟩. These two quantities define the “spread” in the values
of x and p, reflecting a fundamental quantum-mechanical uncertainty in their values.

Exercise 3: Use the results of the previous exercise and demonstrate that

xRMSpRMS ≥ ℏ/2 (25)

That’s the Heisenberg uncertainty relation, it tells you that you can’t know exact
values of position and momentum simultaneously, and the smaller the uncertainty of x,
the larger has to be the uncertainty on p.

Exercise 4: We have seen that the ground state energy E0 = ℏω/2 is non-zero. This
is in sync with non-zero uncertainties on the values of xRMS and pRMS, as if the oscillator
indeed can’t stop moving. Calculate and compare mean kinetic ⟨0|p̂2/2m|0⟩ and mean
potential ⟨0|mω2x̂2/2|0⟩ energies of the oscillator in its ground state |0⟩.

The operator â is not hermitian, so we cannot query it’s instantaneous value. How-
ever, we can query operators x̂ and p̂ (see Eq. 7 and Eq. 8), obtain their mean values,
and thereby construct a mean value of ⟨â⟩ = 1

2
⟨Ψ|x̂|Ψ⟩/x0 + i1

2
⟨Ψ|p̂|Ψ⟩/p0.

Exercise 5: Show by a direct calculation that

∂⟨â⟩/∂t = −iω⟨â⟩ (26)

∂⟨â†⟩/∂t = +iω⟨â†⟩ (27)

Hint: start by calculating the expectation value ⟨Ψ(t)|â|Ψ(t)⟩ using Eq. 24. Express the
answer in terms of ψn amplitudes. Then calculate the time derivative ∂⟨Ψ(t)|â|Ψ(t)⟩/∂t.

Exercise 6: Apply the result of the previous exercise to two cases: |Ψ(t = 0)⟩ = |2⟩
and |Ψ(t = 0)⟩ = 1√

2
|0⟩+ 1√

2
|1⟩. Plot or sketch the time-evolution of ⟨â⟩ in the 2D plane

defined by axis x/x0 and ip/p0.
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Exercise 7: Plot or sketch the mean energy of the oscillator ⟨Ψ(t)|Ĥ|Ψ(t)⟩ as a function

of time for |Ψ(t = 0)⟩ =
√

1
3
|0⟩ +

√
2
3
|n⟩ (choose any n > 0 you like). Is energy really

quantized in a quantum oscillator this time?

B. Coherent states

Consider a special superposition of energy eigenstates, called “coherent” state:

|α⟩ = exp(−|α|2/2)
∞∑
n=0

αn

√
n!
|n⟩ (28)

A coherent state is parametrized by a complex number α. The state with α = 0 is the
same state as |n = 0⟩, the ground state. The prefactor exp(−|α|2/2) is necessary to
normalize the state: exp(−|α|2)

∑
n(αα

∗)n/n! = exp(−|α|2) exp(+|α|2) = 1. Coherent
state is not an energy eigenstate, so it must evolve in time according to Eq. 24. However,
the time-evolution is quite simple: we just need to replace α with α(t):

|α(t)⟩ = exp(−|α|2/2)
∞∑
n=0

αn(t)√
n!

|n⟩, α(t) = α exp(−iωt) (29)

In other words, a coherent state at time t = 0 remains a coherent state but with a time-
evolved parameter α(t). The evolution of α(t) is also simple: |α| remains a constant,
while the Arg(α) changes at a rate ω. The term “coherent” is related to the property
that the relative phase between the Fock state amplitudes ψn and ψn−1 (see Eq. 20) is
the same for all states and is given by Arg(α).

Exercise 8: Show that a coherent state |α⟩ is an eigenstate of the lowering operator â
with eigenvalue α:

â|α⟩ = α|α⟩, (30)

which gives us a few useful relations:(
α|α⟩

)†
= α∗⟨α| =

(
â|α⟩

)†
= ⟨α|â† =⇒ ⟨α|â†|α⟩ = α∗ (31)

⟨α|â†â|α⟩ = αα∗ (32)

⟨α|ââ†|α⟩ = αα∗ + 1 (33)

⟨α|â2|α⟩ = α2 (34)

⟨α|(â†)2|α⟩ = (α∗)2 (35)

Interestingly, the eigenvalue α can be any real or complex number and it is not discrete
at all. Thus, even though energy eigenvalues of a harmonic oscillator are discrete, there
is a continuous nature to it as well!

Exercise 9: Show that the raising operator â† does not have any eigenstates.
Hint: apply â† to a general ket given by Eq. 20 and look for the |n = 0⟩ component.
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Exercise 10: Using Eq. 30, show that the mean value of energy in a coherent state |α⟩
is given by ℏω|α|2 + ℏω/2. Equivalently, ⟨α|â†â|α⟩ = |α2|

Even though the energy eigenvalues are quantized, the mean energy of an oscillator in a
coherent state can take any real number (above ℏω/2)! As the coherent state evolves in
time, the parameter |α|2 stays constant, and so does the mean energy. Phew!

Exercise 11: For an oscillator in a coherent state |α⟩, calculate the variance of the

energy, defined by: E2
RMS = ⟨α|

(
Ĥ − ⟨α|Ĥ|α⟩

)2|α⟩ = ⟨α|Ĥ2|α⟩ − ⟨α|Ĥ|α⟩2. The quantity
ERMS tells us the fluctuation of the total energy of the oscillator in a coherent state, or
the uncertainty in the total number of quanta of energy in the oscillator.

Figure 3: Example distribution of the n-th Fock state probability in a coherent state

Exercise 12: Suppose we query the value of oscillator energy in the same coherent
state |α⟩ many-many times and make a histogram of the readings. The probability to
read ℏω(n+ 1/2) (n = 0, 1, 2, ...) is given by the Poisson distribution

Pn = |⟨α|n⟩|2 = exp(−|α|2)× |α|2n/n! (36)

Sketch the histogram for |α|2 = 0, 3.3, 11.7, 100 (see Fig. 3 as an example). What is the
ratio of the mean energy to ERMS for |α|2 = 100?

Exercise 13: Calculate the mean value of ⟨α|x̂|α⟩ in a coherent state |α⟩ as well
as xRMS given by x2RMS = ⟨x̂2⟩ − ⟨x̂⟩2. Does this value change in time?

Exercise 14: Calculate the mean value of ⟨α|p̂|α⟩ in a coherent state |α⟩ as well as
pRMS given by p2RMS = ⟨p̂2⟩ − ⟨p̂⟩2. Check the product xRMS × pRMS? Does it depend on
the value of α? (compare to results of Eq. 25)

Exercise 15: Choose α(t = 0) = 10 and plot ⟨x̂⟩ as a function of time on a com-
puter. Make the thickness of your line equal to xRMS.

The contrast between Fock states and coherent states behavior of a harmonic oscillator
reflects the controversial duality of light being simultaneously waves and particles.
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C. Displacement operator

We have seen that operator (â†)n/
√
n! creates a state |n⟩ from the ground state |0⟩. What

would be an operator that turns |0⟩ into a coherent state |α⟩?

Exercise 16: Check the following method of creating coherent state:

exp(−|α|2/2) exp(αâ†)|0⟩ = |α⟩ (37)

exp(α∗â)|0⟩ = |0⟩ (38)

No trick here, just use the Taylor series of the matrix exponent and the definition Eq. 28

In dealing with matrix exponent of Pauli operators, I always encouraged you to use the
basis of eigenstates of the operator inside the exponent. For example, the time-evolution
operator exp(−iâ†âωt) applied to a state |n⟩ is equivalent to multiplying it by a phase-
factor exp(−inωt), simple! However, dealing with exp(â†) that way won’t work, because
â† has no eigenvectors! So we are going to need a couple of new tricks.

Baker Campbell Hausdorff (BCH) formula. Consider operators Â and B̂, such that
the commutator [Â, B̂] = ÂB̂ − B̂Â = c, and, importantly, c is just a number. It can be
shown (we don’t give a proof here) that

exp(Â) exp(B̂) = exp(Â+ B̂) exp
(1
2
[A,B]

)
(39)

Exercise 17: Prove that

exp(−|α|2/2) exp(αâ†) exp(−α∗â) = exp(αâ† − α∗â) (40)

Hint: use the BCH formula and [α∗â, αâ†] = |α|2

Next, because exp(−α∗â)|0⟩ = |0⟩, we can formulate a better operator for creating a
coherent state from the ground state, known as the “displacement” operator:

|α⟩ = D̂(α)|0⟩ (41)

D̂(α) = exp(αâ† − α∗â) (42)

Exercise 18: Prove that displacement operator redefined as by Eq. 42 is unitary and
that D̂−1(α) = D̂(−α) = D̂†(α).

Exercise 19: Prove the following commutation relations:

D̂†(α)â = (â+ α)D̂†(α) (43)

D̂†(α)â† = (â† + α∗)D̂†(α) (44)

Hint: apply the two operators in question to an arbitrary coherent state |β⟩. Show first
that D̂(α)D̂(β) = D(α + β) exp((αβ∗ − βα∗)/2).

Exercise 20: Show that for a real α (that is α∗ = α) the displacement operator becomes:

D̂(α) = exp
(
− i

p̂× 2αx0
ℏ

)
(45)
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The momentum operator generates displacements along the x-axis, which makes
sense: in order to change your position you need to have some momentum!

Exercise 21: Prove further that for α∗ = α

exp
(
+ i

p̂× 2αx0
ℏ

)
x̂ exp

(
− i

p̂× 2αx0
ℏ

)
= x̂+ 2αx0 (46)

Hint: use the previously proved commutation relations for D̂, D̂† and â, â†.

Since the coherent state describes a nearly classical motion of a quantum harmonic os-
cillator, the action of a displacement operator on the ground state |0⟩ is equivalent to
taking a classical oscillator at rest and giving it an initial displacement in x = x0(α+α∗)
and initial momentum p = −i(α − α∗). The larger the value of α, the more accurate is
this interpretation. Once displaced, the oscillator begins oscillating, which is equivalent
to the rotation of the vector α in the complex plane at a rate ω.

D. Matrix representation of quantum oscillators

Time to learn representing our operators and kets using matrices and column-vectors. In
theory, the Fock states basis contains an infinite number of vectors. Computers don’t
like that. To code reasonable column and raw vectors on a computer we must force the
maximal possible number of quanta Nmax in the oscillator, that is to set ψn>Nmax = 0.
Such a “truncation” is justified if for some reason the evolution of the oscillator does not
involve highly excited states.

Let’s start with the general state in Eq. 20:

|Ψ⟩ =


ψ0

ψ1

ψ2

...


The basis Fock states would be: |0⟩ =


1
0
0
...

, |1⟩ =


0
1
0
...

, |2⟩ =


0
0
1
...

, ...

The inner product is defined as usual:
⟨Ψ| = |Ψ⟩† = (ψ∗

0, ψ
∗
1, ψ

∗
2, ...); ⟨Ψ|Ψ′⟩ = ψ∗

0ψ
′
0 + ψ∗

1ψ
′
1 + ψ∗

2ψ
′
2 + ...

Exercise 22: Show by explicit matrix multiplication that the identity matrix Î (ones
on the diagonal, zero otherwise), would be given by

Î =
∑
n

|n⟩⟨n| (47)

Let us now define the matrix for the lowering operator:

â|Ψ⟩ = â


ψ0

ψ1

ψ2

...

 =
∑

n=0 ψnâ|n⟩ =
∑

n=0

√
n+ 1ψn+1|n⟩ =


√
1ψ1√
2ψ2√
3ψ3

...


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We can achieve the same effect of applying an operator â to a general quantum state |Ψ⟩
by using the following matrix multiplication:

â|Ψ⟩ =


0

√
1 0 0 ...

0 0
√
2 0 ...

0 0 0
√
3 ...

0 0 0 0 ...
...



ψ0

ψ1

ψ2

ψ3

...


The raising operator matrix is obtained by a simple transposition:

â†|Ψ⟩ =


0 0 0 0 ...√
1 0 0 0 ...

0
√
2 0 0 ...

0 0
√
3 0 ...

...



ψ0

ψ1

ψ2

ψ3

...


Exercise 23: Write down matrices for x̂ and p̂ operators using for Nmax = 4. Do they
come out hermitian?

Exercise 24: Write down matrices for â†a and ââ† operators for Nmax = 4. Are
these matrices identical?

Exercise 25: Use Nmax = 4 and check if the commutation [â, â†] = Î, where Î is
the identity matrix. If it does not exactly match, how do you think we can fix it

We do not list here the matrix for D̂(α) in the Fock basis, but this is an extremely
useful matrix to have for all sorts of numerical calculations in quantum mechanics. In
fact, designing a computationally efficient algorithm to generate the matrix for D̂ in the
Fock basis is an excellent course project!

E. Wavefunctions

So far we figured out the answer to the question “What is your energy?” for an oscillator
in any state |Ψ⟩. What if we instead want to ask a simingly simpler question “Where
are you?”. That is, we want to know the value of position x. Since x̂ = x0(â + â†) is a
hermitian operator, quantum mechanics does allow asking such a question. Specifically,
a hermitian operator x̂ has real eigenvalues and eigenvectors, such that

x̂|x = x′⟩ = x′|x = x′⟩ (48)

A ket |x = x′⟩ is an eigenvector of x̂ with an eigenvalue x′. Just like the Fock states |n⟩, n =
0, 1, 2, ...) form an orthonormal basis, the eigenstates of x̂ form a different orthonormal
basis. We can expand a Fock state |n⟩ in the basis of states |x = x′⟩:

|n⟩ =
∑
x′

Ψn(x
′)|x = x′⟩ (49)

Likewise, we can expand a position eigenstate |x⟩ over the energy eigenstates |n⟩:

|x = x′⟩ =
∑
n

Ψ∗
n(x

′)|n⟩ (50)
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The two decompositions are analogous to decomposing a Ẑ-eigenstate of a qubit in the
X̂-eigenstates basis and vice versa, except here the number of eigenstates in both basis
is infinite. The amplitudes Ψn(x) provide a (generally) complex number for each value
of n and x. Just like in the case of qubits, we rely on the follwing orthogonality conditions:

⟨n|n′⟩ = 0
⟨n|n⟩ = 1
⟨x = x′|x = x′′⟩ = 0
⟨x = x′|x = x′⟩ = 1.

Quantum measurement rule for the position observable. Now enters a delicate
point. If the eigenvalues x′ are discrete, just like the energy eigenvalues En, the probability
that an oscillator in a Fock state |n⟩ is found by a position measurement apparatus at a
position x = x′ equals |Ψn(x

′)|2. In that case we must use the normalization condition∑
x′ |Ψn(x

′)|2 = 1. However, the eigenvalues of x̂ are not discrete! Therefore, a question
“What is your position” does not make sense (even classically). Instead, we have to ask
“Are you between points x = x′ and x = x′ + ∆x′?”, where ∆x′ is some small position
interval. For example, when you are using a ruler to measure the length of something,
you are really deciding that the length is between the two closest gratings on the ruler.
Therefore, we must slightly modify our quantum measurement rules for measuring a
continuous observable x̂. Namely, for an oscillator in a Fock state |n⟩, the probability to
measure the value of x̂ between x′ and x′ + dx′ is given by

Prob(x′ < x ≤ x′ + dx′) = |Ψn(x
′)|2dx′ =⇒

ˆ x=+∞

x=−∞
|Ψn(x)|2dx = 1 (51)

In such a continuous limit the amplitude Ψn(x) in the decomposition of a Fock state |n⟩
over position eigenstates becomes a continuous function of position x. The function Ψn(x)
then called the “wavefunction” of state |n⟩ and it contains all the information on this state.

Recursion relation for Fock-states wavefunctions. We know how x̂ acts both on
the energy eigenstates and on the position eigenstates:

x̂|n⟩ = x0
√
n|n−1⟩+x0

√
n+ 1|n+1⟩ = x0

∑
x′

(√
nΨn−1(x

′)+
√
n+ 1Ψn+1(x

′)
)
|x = x′⟩

x̂|n⟩ =
∑

x′ Ψn(x
′)x̂|x = x′⟩ =

∑
x′ x′Ψn(x

′)|x = x′⟩

Comparing the two above expressions, we find the following recursive relation for Ψn(x):

Ψn+1(x) =
1√
n+ 1

( x
x0

Ψn(x)−
√
nΨn−1(x)

)
(52)

with an implied condition Ψ−1(x) = 0. All that is left to do is to find Ψ0(x), the wave-
function corresponding to the oscillator’s ground state. Then we can recursively generate
all the excited-state wave-functions.

Exercise 26: Use the recursion relation in Eq. 52 to derive the following wave-functions
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of the oscillator’s excited state:

Ψ1(x) = (x/x0)Ψ0(x) (53)

Ψ2(x) =
1√
2

[
(x/x0)

2 − 1
]
Ψ0(x) (54)

Ψ3(x) =
1√
6
(x/x0)

[
(x/x0)

2 − 3
]
Ψ0(x) (55)

... (56)

QuTiP has these already coded so it is easy to plot them and see where a quantum oscil-
lator is in various states. But first we need to somehow find Ψ0(x)! For that we have to
study the momentum operator.

Momentum operator in the position eigenstates basis. We already had a hint
that momentum operator generates displacements along x. So we take a displacement
operator and use its commutations properties from (Eq. 46). Choosing a small position
change δx and α = δx/2x0 and applying the commutation relation in Eq. 46, we get

exp
(
− ip̂δx

ℏ

)
|x = x′⟩ = |x = x′ + δx⟩ (57)

Assuming δx is sufficiently small, we Taylor-expand the matrix exponent to the first order:

exp(−ip̂δx/ℏ) ≈ 1− ip̂δx/ℏ (58)

from which we conclude that

p̂|x = x′⟩ = (+iℏ)
|x = x′ + δx⟩ − |x = x′⟩

δx
(59)

Next, apply p̂ to an arbitrary state Fock state:

p̂
∑
x

Ψn(x)|x⟩ =
iℏ
δx

∑
x

Ψn(x)|x+ δx⟩ −Ψn(x)|x⟩ =
iℏ
δx

∑
x

Ψn(x− δx)|x⟩ −Ψn(x)|x⟩

Taking the limit δx→ 0, we get

p̂
∑
x

Ψn(x)|x⟩ =
∑
x

(−iℏ)∂Ψn(x)

∂x
|x⟩ (60)

Thus, acting with the operator p̂ on a Fock state ket |n⟩, expanded in the position
eigenstates basis, is equivalent to replacing the corresponding wavefunction Ψn(x) ac-
cording to the following rule: Ψn(x) → −iℏ∂Ψn(x)/∂x. This property of momentum
operators allows us to find a differential equation for the ground state wave-function:

â|0⟩ =
[ x̂

2x̂0
+

ip̂

2p0

]
|0⟩ =

∑
x

Ψ0(x)
[ x̂

2x̂0
+

ip̂

2p0

]
|x⟩ =

∑
x

[xΨ0(x)

2x0
+ x0

∂Ψ0(x)

∂x

]
|x⟩ (61)

Since the expression above must equal to the null-vector, we have to set all amplitudes in
front of each |x⟩ to zero, which yields

xΨ0(x) + 2x20
∂Ψ0(x)

∂x
= 0 (62)
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Figure 4: Combined plot of the harmonic oscillator potential V (x) and the ground state
wavefunction Ψ0(x) (measured from the horizontal thin line, which in tern defines the
ground state energy level ℏω/2.)

Exercise 27: Verify that the following function satisfies Eq. 62:

Ψ0(x) =
1

(2πx20)
1/4

exp
[
− (x/2x0)

2
]

(63)

Exercise 28: Plot the 3 lowest energy eigenstates wavefunctions using the same X-axis
(stack the plots vertically). Count the number of nodes (zero-value crossing). Make a sim-
ilar plot with |Ψ|2. Are you surprised with where the oscillator is more or less likely to be?

Exercise 29: Verify by numerical integration that Ψ0(x), Ψ1(x), and Ψ2(x) magi-
cally come out normalized in the sense of Eq. 51.

Exercise 30: Verify by numerical integration that Ψ0(x), Ψ1(x), and Ψ2(x) magically
come out orthogonal, that is

ˆ +∞

−∞
Ψ0(x)Ψ1(x)dx =

ˆ +∞

−∞
Ψ1(x)Ψ2(x)dx =

ˆ +∞

−∞
Ψ2(x)Ψ0(x)dx = 0 (64)

Circling back to the query “where are you?”, we can now calculate the probability that
the oscillator in a Fock state |n⟩ is located between position values x1 and x2:

Prob[x1 ≤ x ≤ x2] =

ˆ x2

x1

|Ψn(x)|2dx (65)

With a few exceptions, it’s best to do such integrals numerically. We remind that the
geometric meaning of an integral is the area underneath the function |Ψn(x)|2, so even if
one cannot do the integral accurately, one can still get an idea of the answer.

Exercise 31: Plot |Ψn(x)|2 for n = 0, 1, 2. For each n, calculate the probability that
|x| < xRMS, which we calculated in Exercise 2 (xRMS varies with n).

F. Discovering quantum mechanics with oscillator wavefunctions.

Classically forbidden region. We have already seen that a quantum oscillator kind of
can’t stop moving in its ground state |0⟩. With the instrument of wavefunctions we can
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furthermore discover that a quantum oscillator can be found in places where a classical
one is just not allowed to be! Indeed, since the kinetic energy cannot be negative, a
classical oscillator with energy E must stop whenever V (x) = mω2x2/2 = E (because
then p2/2m = 0). Therefore, a classical oscillator with energy E can never be found at a
position x satisfying |x| > xc =

√
2E/mω2. Is this the case for a quantum oscillator?

Suggestion for numerical analysis. We recommend defining a harmonic oscillator via two
parameters: the frequency ω and x0 which by now you know is related to the size of the
quantum fluctuations of x. It would also be helpful to always normalize position by x0
and energy by ℏω in your plots.

Exercise 32: Plot the oscillator’s potential energy V (x) = mω2x2/2 = ℏω(x2/4x20) and
identify the classically forbidden region geometrically for the ground state Ψ0(x).

Exercise 33: Stack the plot from the precious exercise on top of a plot for |Ψ0(x)|2,
using exactly the same range of x-axis. We call it the “V (x)−Ψ(x)” plot. Observe that
there is a non-zero probability to find the oscillator at |x| > xc. Indicate this probability
geometrically (corresponding area underneath the probability density function).

Exercise 34: Make the “V (x)−Ψ(x)” plot for |Ψ100|2 and observe that one is more likely
to find a paticle near the boundaries of the classically forbidden region. Does this make
sense with your classical intuition?

Figure 5: Illustration of the De Broglie wavelength notion using state |n = 6⟩. Near x = 0
we can neglect the potential energy and hence we seeing a wave-function of a nearly free
particle with a momentum equal to |p| =

√
2mE6.

De Broglie wavelength. Consider the wavefunction Ψ10(x) Observe how the wavefunc-
tion (and hence the probability density) oscillates in x. Let’s zoom in on a couple of
periods near x = 0. In that region V (x) ≪ E, so the potential energy may be neglected,
and we can equate E ≈ p2/2m. This gives us the value of momentum in state Ψ10(x)
near x = 0, p ≈

√
2mE10. We can convert this value of momentum into a length scale

using a relation
λ = 2πℏ/p (66)

The length scale λ is called De Broglie wavelength. Thus, the Plank’s constant not only
converts frequency to energy but it also converts wavelength to momentum. Every parti-
cle with a momentum p is associate with a wave in real space, the wavelength of which is
given by the De Broglie wavelength. This is a probability wave, it shows that the proba-
bility to find a particle in a given small interval of positions oscillates in space. It is in that
sense a quantum particle can behave as a wave. The heavier the particle and the larger
its energy, the smaller the wavelength and hence the harder it is to resolve the oscillations.
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Exercise 34: Calculate De Broglie wavelength of a cat chasing a mouse. Use any
realistic assumptions on the mass and the speed of the cat.

Exercise 35: Plot Ψ10(x), zoom in to its period near the center x = 0, and extract the
period (which would have the units of length). Verify that this period indeed approxi-
mately equals to 2πx0/

√
10 + 1/2 for the Fock state |10⟩.

Exercise 36: Repeat the previous exercise and identify the De Broglie wavelength λn for
states |n⟩, n = 10, 20, 30, .., 100. Summarize your answers on a λn vs n plot and compare
them to the analytical prediction λn = 2πx0/

√
n.

Evolution of a state with “better known” position. Let’s see just how much a quan-
tum oscillator does not want to have an exact position. Let us prepare a comparatively
well-localized state

|Φ⟩ =
∑
x′

Φ(x′)|x = x′⟩, Φ(x) = exp(−(x/2a)2) (67)

By choosing a < x0, we make |Φ⟩ not an energy eigenstate, so it must evolve in time.
How to work out this evolution? The same ket can be decomposed over the Fock states:

|Φ⟩ =
∑
n

ϕn|n⟩ (68)

Therefore,

Φ(x) = ⟨x|Φ⟩ =
∑
n

ϕnΨn(x) (69)

Important: the two above equations allow us to find a wavefunction Φ(x) associated with
any ket vector |Φ⟩ as soon as we find out the amplitudes ϕn for its decomposition over
the Fock states. Very useful trick! Here we are solving the reverse problem, we already
know Φ(x) and we want to find the amplitudes ϕn. To do that we use the orthogonality
properties of position and energy eigenstates::∑

x

Φ(x)Ψm(x) =
∑
n

ϕn

∑
x

Ψn(x)Ψm(x) (70)

Recalling that x is a continuous variable, we must replace the summation with integration:∑
x

Ψn(x)Ψm(x) →
ˆ x=+∞

x=−∞
Ψn(x)Ψm(x)dx = δn,m (71)

∑
x

Φ(x)Ψn(x) →
ˆ x=+∞

x=−∞
Φ(x)Ψn(x)dx = ϕn (72)

(73)

And the time evolution of |Φ(t)⟩ is given by

|Φ(t)⟩ =
∑
n

ϕn exp(−inωt)|n⟩ (74)

ϕn =

ˆ x=+∞

x=−∞
Φ(x)Ψn(x)dx (75)

Φ(x, t) =
∑
n

ϕn exp(−inωt)Ψn(x) (76)
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Eq. 76 defines the evolution of an arbitrary initial quantum state in both time and space.

Exercise 37: Make a movie for a time-evolution in Eq. 76 using the initial state
Φ(x) = exp(−(x/2a)2) and try a = x0 (nothing should evolve), a = x0/2, a = x0/10,
a = x0/100. To implement the numerics, use Nmax = 50 and plot |Φ(x, t)|2. Experiment
with the time step and the total time duration to make sure you don’t miss any action.

Evolution of a coherent state. Eq. 76 describes in fact the time-evolution start-
ing from an arbitrary state. Let’s apply it to a couple of more familiar initial states.

Exercise 38: Make a movie for a time-evolution in Eq. 76 starting from a coherent state
α defined in Eq. 28. In this case we already know that ϕn = (α)n/

√
n! (up to a constant).

Try α = 1, 2, 10. Do you imagine classical oscillator moving that way?

Exercise 39: Make a movie for a time-evolution in Eq. 76 starting from a state
1√
2
|n = 0⟩ + 1√

2
|n = 10⟩. Do you imagine classical oscillator moving that way? Take

a few of your favorite snapshots for the homework report.

G. Quantum mechanics beyond harmonic oscillator (extra credit)

Weakly anharmonic oscillator. By now we have built up tools to study main aspects
of quantum-mechanical bound motion, not just restricted to harmonic oscillators. The
Python implementation of these exercises will be discussed in the seminars.

Exercise 40: Consider a system with a Hamiltonian Ĥ = Ĥ0 + Ĥ1, where Ĥ0 =
ℏω(â†â+1/2) is the standard harmonic oscillator Hamiltonian and there is an additional
energy term Ĥ1 = ℏK(a+ a†)4 where K = ω/10. This term would come up in the case of
an anharmonic potential energy V (x) = mω2x2/2+K(x/x40), think of a spring that stiff-
ens as it is stretched more. Question: find numerically the 4 lowest energy eigenvalues
and eigenstates of Ĥ using the energy eigenstates of Ĥ0.

Hint: For example, we can choose Nmax = 50, define the matrices â and â†, and build the
full Hamiltonian matrix using the matrix multiplication. And proceed with an eigensolver.

Comment: For K = 0 we get H = H0 so the Hamiltonian matrix should come out
diagonal with familiar oscillator eigenvalues. Once you add K ̸= 0, the energy eigenavlues
will change, and the eigenstates would be superpositions of Fock states:

|Ek⟩ =
n=Nmax∑

n=0

ϕn(k)|n⟩

The eigensolver will spit out Nmax values of Ek and corresponding lists of ϕn(k) for each k.
Usually this approach captures well the lowest energy eigenstates. The more eigenstates
we would like to capture accurately, the higher the value of Nmax we must choose. The
way to verify you have chosen a good value Nmax for the task is to double it and observe
that the the eigenvalues change negligibly
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Exercise 41: Obtain the wavefunction for the lowest four energy states Φ0(x), Φ1(x),
Φ2(x), and Φ3(x) which are given by Eq. 69. For example:

Φ0(x) =
n=Nmax∑

n=0

ϕn(k = 0)Ψn(x) (77)

where Ψn(x) are the familiar Fock states wavefunctions and the amplitudes ϕn for each
k = 0, 1, 2, 2 are the components of your eigenvectors in the previous exercise. Plot Φ0(x)
against Ψ0(x), etc., and observe the changes in the wavefunction that the K-term brings.

From a weakly anharmonic oscillator to a qubit. Let us apply an external drive
signal at a frequency ωd to our weakly anharmonic oscillator, at a frequency close to
ω == (E1 − E0)/ℏ. Such a drive corresponds to a new term in the Hamiltonian

Ĥ = Ĥ0 + Ĥ1 + (â+ â†)g cosωdt (78)

To setup the time-dependent Schrodinger’s equation, it’s best to use the basis of eigen-
states of Ĥ0+ Ĥ1, obtained for some Nmax and truncate it to a small number Mmax of the
lowest energy states (we start in the ground state and we do not expect to go far...). In the
basis of eigenstates of Ĥ0+Ĥ1, the matrix for Ĥ0+Ĥ1 is already diagonal. All we need is to
calculate the the matrix (â+ â†) in this new basis and arrive at aMmax×Mmax matrix for
the time-dependent Hamiltonian. Then we duly solve the time-dependent Schrodinger’s
equation and plot the probabilities of finding the system in any of the Mmax eigenstates
of the un-driven Hamiltonian. This method is in direct analogy with the Rabi oscillations
problem for a qubit.

Exercise 42: Define states |0⟩, |1⟩, |2⟩ as the three lowest energy eigenstates of Ĥ0+Ĥ1.
Set K = ω/10. The corresponding eigenenergies are E0, E1, E2. Introduce the drive term
at a frequency ωd = (E1 − E0)/ℏ and set g = ω/100 and solve for the resulting time-
dependent wave-function. Plot the probabilities of finding the system in states |0⟩, |1⟩,
and |2⟩ as a function of time on the same plot.

N.B. If the probability to find the system in state |2⟩ is nearly zero, then it’s as if there
is no state |2⟩. So, as long as we drive an anharmonic oscillator not too strongly and not
far from the resonance, only the two resonating states matter, and the system behaves as
a qubit!

Exercise 43: Repeat the previous exercise for a stronger drive amplitude g = ω/50,
g = ω/25, g = ω/10. See if you notice effects of populating state |2⟩. In this case your
system does not qualify to be a qubit.

Quantum tunneling through the energy barrier. Let us consider yet another devi-
ation from a Harmonic oscillator, a system described by the Hamiltonian Ĥ = Ĥ0 + Ĥ1,

where this time Ĥ1 = B cos
[
2π(x̂/x0)

]
, and H0 is the original Harmonic oscillator Hamil-

tonian. Let us further consider the value of B such that B = 10 × ℏω. Classically this
Hamiltonian describes the motion of a particle in a “double-well” potential given by
V (x) = (ℏω/4)(x/x0)2 + B cos(2πx/x0). Such a potential has two local minima posi-
tioned approximately at x = ±x0. A particle with an energy less than 2B will have to be
stuck oscillating in one or the other well, but it cannot relocate from one to another. Is
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this so in quantum mechanics?

We can solve for the spectrum and the wavefunctions of the lowest energy states in
complete analogy with previous problems. All we need to do is to work out the matrix for
Ĥ1 in the basis of the eigenstates of Ĥ0. We note that this Hamiltonian can be expressed
via the good-old displacement operators:

H1 =
B

2

(
D̂(2πi) + D̂†(−2πi)

)
(79)

There are various ways to create the matrix, it’s quite an exercise on its own, but fortu-
nately it’s been done in most known numerical packages.

Exercise 44: Calculate the lowest 10 eigenenergies and eigenvectors (along with their
wavefunctions) and analyze the results. Observe that the energy difference between the
lowest two energy states is much smaller than to the second excited state. Also observe
that despite the energy of the lowest two states is far below the top of the barrier, the
wavefunction is non-zero in both local minima at the same time. Somehow, the particle
“tunnels” through the barrier. This phenomenon is called quantum tunneling. It’s related
to the fact that a quantum particle can be in the classically forbidden zone, albeit with a
suppressed probability.

Exercise 45: Consider any state localized in the left well as the initial condition
for the Hamiltonian Ĥ0 + Ĥ1 in the previous problems. Calculate the time-evolution of
this wavefunction and make a movie of the probability density. Observe how a particle
oscillates between being in the left well and in the right well, being in both wells at the
same at the half-time. How crazy is that? But that’s an excellent way to make a qubit,
because the second excited state is far-far off-resonance.

H. Wavefunctions of position and momentum eigenstates in a
truncated Fock-basis (extra credit)

Here I invite you to play with numerically calculated eigenvalues of x̂ and p̂ using a basis
of Nmax lowest energy eigenstates, and examine the wavefunctions of the resulting ket’s.
Indeed, what is a wavefunction Ψx′(x) for a position eigenstate |x = x′⟩? On one hand,
the very definition of it says it must be zero everywhere apart from x = x′. And it needs
to be normalized. So the answer should be Ψx(x) = δ(x), something known in calculus
as the delta-function. On the other hand, we can construct a matrix x̂ = x0(â+ â†) for a
given Nmax in the Fock basis, duly find its eigenvalues and eigenvectors, and use the con-
struction in Eq. 69. We will find that the answer surely depends on Nmax and in the limit
Nmax → ∞ we would indeed find that for every eigenvalue x′, we get Ψx′(x) = δ(x− x′).
In other words, to define a position eigenstate rigorously we need an infinite number of
energy eigenstates! This sounds especially crazy if we just want to prepare an oscillator
at rest at a position x = 0: – yet, in this state, no matter how high oscillator energy you
choose (number of quanta, to be precise), there is a non-zero probability for this to hap-
pen. Let’s make sense of this by considering the approximate wavefunctions of position
eigenstates while increasing the number Nmax

Exercise 46: Choose a value of Nmax = 10 and calculate the eigenvalues of x̂ matrix in
the Fock basis. Choose an eigenvalue x closest to 0 and use the corresponding eigenvector
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
ψx=0,0

ψx=0,1

ψx=0,2

...
ψx=0,Nmax


to construct the wavefunction according to Eq. 69: Ψx=0(x) =

∑n=Nmax

n=0 ψx=0,nΨn(x). Try
Nmax = 10, 20, 100. Normalize the X-axis by x0. Try various eigenvalues of x.

Exercise 47: Replace the matrix for x̂ with the matrix for p̂ and repeat the previous
exercise. The resulting wave-function would now describe momentum eigenstates in the
truncated Fock basis. What do we know about those wavefunctions? Well, they should
correspond to the De Broglie waves, with a wavelength linked to the chosen momentum
eigenvalue. Check if this works. Start with the lowest absolute values of p (longer De
Broglie wavelength).

I. Algebraic derivation of Ψ0(x) (extra credit)

In what follows, we are going to present a rather unusual but elegant method for finding
Ψ0(x) using properties of displacement operators applied to ground state and to position
eigenstates.
First, we recall that for any value of the position x′ we have (see Eq. 48)

Ψ0(x
′) = ⟨x = x′|0⟩ (80)

All we need is to find how this inner product depends on x′. The first trick is to move
the dependence on x′ from the state to an operator using Eq. 46:

|x = x′⟩ = D̂(α = x′/2x0)|x = 0⟩ =⇒ ⟨x = x′| = ⟨x = 0|D̂†(x′/2x0) (81)

Next, we develop the displacement operator D̂ using the BCH formula (see Eq. 40):

D̂†(x′/2x0) = exp
[−x′â† + x′â

2x0

]
= exp

[
− 1

2
(x′/2x0)

2
]
exp

[
− x′â†

2x0

]
exp

[ x′â
2x0

]
(82)

Next, we take advantage of the ground state property (see Eq. 38) and shamelessly change
the sign in front of â in the rightmost operator in Eq. 82 from + to -: :

exp
[
+
x′â

2x0

]
|0⟩ = exp

[
− x′â

2x0

]
|0⟩ = |0⟩ (83)

D̂(x′/2x0)|0⟩ = exp
[
− 1

2
(x′/2x0)

2
]
exp

[
− x′â†

2x0

]
exp

[
− x′â

2x0

]
|0⟩ (84)

Next, we apply the BCH formula again and replace â+ â† = x̂/x0:

D̂(x′/2x0)|0⟩ = exp
[
− 1

2
(x′/2x0)

2
]
exp

[
− 1

2
(x′/2x0)

2
]
exp

[ x̂x′
2x20

]
|0⟩ (85)

Finally, it is time to take advantage of

⟨x = 0| exp
[ x̂x′
2x20

]
= ⟨x = 0| (86)

to arrive at
Ψ0(x) = exp

[
− (x/2x0)

2
]
× ⟨x = 0|0⟩ (87)
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The remaining overlap between the x = 0 position eigenstate and the ground state
⟨x = 0|0⟩ is merely a constant, which can be found from the normalization condition´ +∞
−∞ |Ψ0(x)|2dx = 1. This is a Gaussian integral, so we can just look it up to arrive at the
final-final answer for the ground-state wave function of a quantum harmonic oscillator:

Ψ0(x) =
1

(2πx20)
1/2

exp
[
− (x/2x0)

2
]

(88)

Exercise 48: You might have noticed by now that position and momentum enter quite
symmetrically into the oscillator algebra. So, can you repeat the above analysis to find
the wavefunction Ψ̃0(p) of the ground state |0⟩ in the basis of momentum eigenstates?
These momentum wavefunctions would allow us to know the distribution of momentum for
a harmonic oscillator, that is how likely it is to have this momentum over that momentum
in each energy eigenstate.
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